In situ electron microscopy electromechanical characterization of a bistable NEMS device.

نویسندگان

  • Changhong Ke
  • Horacio D Espinosa
چکیده

A previously proposed two-terminal carbon-nanotube-based device with closed-loop feedback is demonstrated through in situ scanning electron microscopy (SEM) experiments. The pull-in/pull-out tests were carried out using a multi-walled carbon nanotube (MWCNT) welded to a conductive probe attached to a nanomanipulator. The MWCNTs were cantilevered over a gold electrode and electrostatically actuated. The measured current-voltage curves exhibited the theoretically predicted hysteretic loop between the pull-in and pull-out processes. Both experiments and theoretical modeling demonstrated the bistability of the device confirming its utility in applications such as memory elements, NEMS switches, and logic devices. Failure mechanisms observed during the pull-in/pull-out event are also reported and discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental Techniques for the Mechanical Characterization of One-Dimensional Nanostructures

New materials and nanostructures with superior electro-mechanical properties are emerging in the development of novel devices. Engineering application of these materials and nanostructures requires accurate mechanical characterization, which in turn requires development of novel experimental techniques. In this paper, we review some of the existing experimental techniques suitable to investigat...

متن کامل

In situ TEM electromechanical testing of nanowires and nanotubes.

The emergence of one-dimensional nanostructures as fundamental constituents of advanced materials and next-generation electronic and electromechanical devices has increased the need for their atomic-scale characterization. Given its spatial and temporal resolution, coupled with analytical capabilities, transmission electron microscopy (TEM) has been the technique of choice in performing atomic ...

متن کامل

Nano-electromechanical Devices Robust Carbon-Nanotube-Based Nano-electromechanical Devices: Understanding and Eliminating Prevalent Failure Modes Using Alternative Electrode Materials

The International Technology Roadmap for Semiconductors (ITRS [ 1 ] ) identifi es emerging technologies with the potential to sustain Moore’s Law. A necessary succession from planar CMOS (complementary metal-oxide semiconductors) to nonplanar/dual-gate CMOS, and ultimately to novel architectures such as carbon nanotube (CNT)-based nano-electromechanical systems (NEMS) is envisioned. The ITRS al...

متن کامل

Fast on-wafer electrical, mechanical, and electromechanical characterization of piezoresistive cantilever force sensors.

Validation of a technological process requires an intensive characterization of the performance of the resulting devices, circuits, or systems. The technology for the fabrication of micro and nanoelectromechanical systems (MEMS and NEMS) is evolving rapidly, with new kind of device concepts for applications like sensing or harvesting are being proposed and demonstrated. However, the characteriz...

متن کامل

Ex-situ studies on calcinations of structural, optical and morphological properties of post-growth nanoparticles CeO2 by HRTEM and SAED

Nanocrystalline particles of Cerium Oxide (CeO2) have been prepared by the chemical precipitation method using Cerium nitrate and Urea with a molar ratio of 1:2. The results revealed that the formation of CeO2 fine particles is influenced by molar ratio of metal nitrates to fuel. Well faceted CeO2 nanoparticles, were synthesized by thermal-assisted dissociation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Small

دوره 2 12  شماره 

صفحات  -

تاریخ انتشار 2006